
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on
the algebraic structure of elliptic curves over finite fields.
ECC requires smaller keys compared to non-ECC cryptography to provide equivalent security.
For example, to achieve the same security ensured by ECC having private key of 256 bit length,
it is required to use 3000 bit private key length for RSA cryptosystem and others.

Elliptic curves are applicable for key agreement, digital signatures, pseudo-random
generators and other tasks.
Indirectly, they can be used for encryption by combining the key agreement with a
symmetric encryption scheme.

Finite Field denoted by Fp (or rarely Zp), when: p is prime.

Fp={0, 1, 2, 3, …, p-1}; +mod p, -mod p, •mod p, :mod p (except division by 0).

Cyclic Group: Zp* = {1, 2, 3, …, p-1}; •mod p, :mod p.

For example, if p=11, then one of the generetors is g=2.

x 0 1 2 3 4 5 6 7 8 9 10

2x mod p 1 2 4 8 5 10 9 7 3 6 1

Elliptic Curve Digital Signature Algorithm - Bitcoin Wiki (ECDSA)
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_AlgorithmFeb 10, 2015
Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic
algorithm used by Bitcoin, Ethereum and other blockchain methods to ensure
that funds can only be spent by their owner.
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

p=11

xa=

Discrete Exponent Function - DEFg(x)=gx mod p
 x is in Zp-1= Z10 = {0, 1, 2, …, 9}; mod (p-1)
DEF(x) is in Zp* =Z11* ={1, 2, 3, …, 10}; mod p

DEF: Zp-1 → Zp*.
Fermat theorem: if p is prime, then for any z: zp-1=1 mod p.
If g is a generator in Zp* then DEF is 1-to-1 mapping.

0 1

1 2

2 4

3 8

4 5

5 10

6 9

7 7

8 3

9 6

xZ10 aZ11
*

The main function used in cryptography was Discrete Exponent Function - DEF:
DEF(x) = gx mod p = a.

δ

Animation

114_001 EC_Animac

 114_001 EC_Animac Page 1

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Key_agreement
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/CPRNG
https://en.wikipedia.org/wiki/CPRNG
https://en.wikipedia.org/wiki/Encryption
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_AlgorithmFeb
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

Multiplicative Group Zp
* Additive Group Zp-1

+

Zp
*={1, 2, 3, …, p-1} Zp-1

+={0, 1, 2, 3, …, p-2}

Operation: multiplication mod p Operation: addition mod (p-1)

Neutral element is 1. Neutral element is 0.

Generator g: Zp
*={ gi; i=0,1,2, …, p-2}

Two criterions to find g when p is strong
prime.

gn≠1 mod p if n<p.

Generator g: Zp-1
+={i•g; i=0,1, 2,…,p-2}

E.g. g=1.

(p-1)•g=0 mod (p-1) and

n•g≠0 mod (p-1) if 0<n<p-2.

Modular exponent: a=gk mod p
a = g•g•g• …•g mod p; k–times.

Modular multiplication: a=k•g mod p-1
a = g+g+g+ …+g mod p-1; k–times.

p = 11, p-1 = 10
+mod (p-1)

Z10
+={0, 1, 2, …, 9}

|Z10
+|=10; g=1.

p = 11, p-1 = 10
•mod p

Z11*={1, 2, …, 10}
|Z11*|=10, g=2.

x 2^x

mod 11

0 → 1

1 → 2

2 → 4

3 → 8

4 → 5

5 → 10

6 → 9

7 → 7

8 → 3

9 → 6

10 → 1

x x●1

mod 10

0 → 1

1 → 2

2 → 3

3 → 4

4 → 5

5 → 6

6 → 7

7 → 8

8 → 9

9 → 0

10 → 1

Coordinate systems XOY in subsequent examples are defined in the plane of real numbers.

 114_001 EC_Animac Page 2

 114_001 EC_Animac Page 3

Addition of points P and Q in EC: P + Q = T
P(xP,yP) + Q(xQ,yQ) = T(xT,yT)

Elliptic curve ha a property that if line crosses two points, then there is a third crossing point in the curve.

Points in the plane or plane curve we denote by the capital letters, e.g. A, G, P, Q, etc.
Numbers-scalars we denote by the lowercase letters, e.g., a, g, x, y, z, etc.

P + Q = T

TY

TX

T + (-T) = 0 ???

 114_001 EC_Animac Page 4

Elliptic Curve Group (ECG)

Number of points N of Elliptic Curve with coordinates (x, y) is an order of ECG.

Addition operation ⊞ of points in ECG: let points P(xP,yP) and Q(xQ,yQ) are in EC with coordinates
(xP,yP) and (xQ,yQ) then P ⊞ Q = T with coordinates (xT,yT) in EC.

Neutral element is group zero 0 at the infinity (∞) of [XOY] plane.

Multiplication of any EC point G by scalar z: T=zG; T=G ⊞ G ⊞ G ⊞…⊞ G; z–times.

Generator–Base Point G: ECG={ iG; i=1,2,…,N}; NG=0 and qG≠0 if q<N.

For current cryptographic purposes, an elliptic curve is a plane curve over a finite field
Fp={0, 1, 2, 3, …, p-1}, (rather than the real numbers) p-is prime.
Which consists of the points satisfying the equation over Fp

 y2=x3+ax+b mod p

along with a distinguished point at infinity, denoted by 0 (∞).
Finite field is an algebraic structure, where 4 algebraic operations: +mod p, -mod p, ´mod p, :mod p

are defined except the division by 0 excluded.

ElGamal Cryptosystem (CS) Elliptic Curve Cryptosystem (CS)

PP=(strongprime p, generator g);
p=255996887; g=22;

PP=(EC secp256k; BasePoint-Generator G; prime p; param. a, b);

Parameters a, b defines EC equation y2=x3+ax+b mod p over Fp.

PrK=x;
>> x=randi(p-1).

PrK ECC=z;
>> z=randi(p-1).

PuK=a=gx mod p. PuKECC=A=zG.

Alice A: x=1975596; a=210649132; Alice A: z=…..; A=(xA, yA);

ECDSA animacija

Signing and Verifying Ethereum Signatures – Yos Riady · Software Craftsman

https://medium.com/coinmonks/elliptic-curve-cryptography-6de8fc748b8b

 114_001 EC_Animac Page 5

https://en.wikipedia.org/wiki/Plane_curve
https://en.wikipedia.org/wiki/Point_at_infinity
https://yos.io/2018/11/16/ethereum-signatures/
https://medium.com/coinmonks/elliptic-curve-cryptography-6de8fc748b8b

Alice A: x=1975596; a=210649132; Alice A: z=…..; A=(xA, yA);

Let us consider abstract EC defined in XOY and expressed by the equation:
 y2 = x3 + ax + b mod p.
EC points are computed by choosing coordinate x and computing coordinate y2.
To compute coordinate y it is needed to extract root square of y2.
 y = ±√y2 mod p.
Notice that from y2 we obtain 2 points in EC, namely y and -y no matter computations are performed
with integers mod p or with real numbers.
Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC.
Since all arithmetic operations are computed mod p then according to the definition of negative points
in Fp points y and -y must satisfy the condition

 y + (-y) = 0 mod p.
Then evidently
 y2 = (-y)2 mod p.
For example:
-2 mod 11 = 9
22 mod 11 = 4 & 92 mod 11 = 4
>> mod(9^2,11)
ans = 4

The positive and negative coordinates y and -y in EC in the real numbers plane XOY are presented in Fig.

The positive and negative numbers for p=11 are presented in table .

y mod 11 (-y) mod 11

1 odd even -1=10

2 even odd -2=9

3 odd even -3=8

4 even odd -4=7

5 odd even -5=6

6 even odd -6=5

7 odd even -7=4

8 even odd -8=3

9 odd even -9=2

10 even odd -10=1

Notice that performing operations mod p if y is odd then -y is even and vice versa.

This property allows us to reduce bit representation of PuKECC=A=zG =(xA, yA);
In normal representation of PuKECC it is needed to store 2 coordinates (xA, yA) every of them having 256 bits.
For PuKECC it is required to assign 512 bits in total.
Instead of that we can store only xA coordinate with an additional information either coordinate yA is odd or

>> m2=mod(-2,11)
m2 = 9

>> mod_exp(2,2,11)
ans = 4
>> mod_exp(9,2,11)
ans = 4

 114_001 EC_Animac Page 6

Instead of that we can store only xA coordinate with an additional information either coordinate yA is odd or
even.
The even coordinate yA is encided by prefix 02 and odd coordinate yA is encoded by prefix 03.
It is a compressed form of PuKECC.
If PuKECC is presented in uncompressed form than it is encoded by prefix 04.

Imagine, for example, that having generator G we are computing PuKECC=A=zG =(xA, yA) when z=
Please ignore that after this explanation since it is crasy to use such a small z. It is a gift for adversary
To provide a search procedure.

Then PuKECC is represented by point 8G as depicted in Fig. So we obtain a concrete point in EC being either
even or odd.
The coordinate yA of this point can be computed by having only coordinate xA using formulas presented above
and having prefix either 02 or 03.

EC: y2=x3+ax+b mod p

Let we computed PuKECC=A=(xA, yA)=8G .
Then (yA)2 = (xA)3+a(xA)+b mod p is computed.
By extracting square root from (yA)2 we obtain 2 points:

8G and -8G with coordinates (xA, yA) and(xA, -yA).
According to the property of arithmetics of integers mod p
either yA is even and -yA is odd or yA is odd and -yA is even.
The reason is that yA+(-yA)=0 mod p as in the example
above when p=11 and that there is a symmetry of EC with
respect to x axis..
Then we can compress PuKECC representation with 2
coordinates (xA, yA) by representing it with 1coordinate xA

and adding prefix either 02 if yA is even or 03 if yA is odd.

 114_001 EC_Animac Page 7

